Extensions 1→N→G→Q→1 with N=D4xC32 and Q=S3

Direct product G=NxQ with N=D4xC32 and Q=S3
dρLabelID
S3xD4xC3272S3xD4xC3^2432,704

Semidirect products G=N:Q with N=D4xC32 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4xC32):1S3 = He3:6D8φ: S3/C1S3 ⊆ Out D4xC327212+(D4xC3^2):1S3432,153
(D4xC32):2S3 = He3:7D8φ: S3/C1S3 ⊆ Out D4xC32726(D4xC3^2):2S3432,192
(D4xC32):3S3 = D4xC32:C6φ: S3/C1S3 ⊆ Out D4xC323612+(D4xC3^2):3S3432,360
(D4xC32):4S3 = C62.13D6φ: S3/C1S3 ⊆ Out D4xC327212-(D4xC3^2):4S3432,361
(D4xC32):5S3 = D4xHe3:C2φ: S3/C1S3 ⊆ Out D4xC32366(D4xC3^2):5S3432,390
(D4xC32):6S3 = C62.16D6φ: S3/C1S3 ⊆ Out D4xC32726(D4xC3^2):6S3432,391
(D4xC32):7S3 = C3xC32:7D8φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2):7S3432,491
(D4xC32):8S3 = C33:15D8φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2):8S3432,507
(D4xC32):9S3 = C3xD4xC3:S3φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2):9S3432,714
(D4xC32):10S3 = C3xC12.D6φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2):10S3432,715
(D4xC32):11S3 = D4xC33:C2φ: S3/C3C2 ⊆ Out D4xC32108(D4xC3^2):11S3432,724
(D4xC32):12S3 = C62.100D6φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2):12S3432,725
(D4xC32):13S3 = C32xD4:S3φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2):13S3432,475
(D4xC32):14S3 = C32xD4:2S3φ: trivial image72(D4xC3^2):14S3432,705

Non-split extensions G=N.Q with N=D4xC32 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4xC32).1S3 = He3:8SD16φ: S3/C1S3 ⊆ Out D4xC327212-(D4xC3^2).1S3432,152
(D4xC32).2S3 = Dic18:C6φ: S3/C1S3 ⊆ Out D4xC327212-(D4xC3^2).2S3432,154
(D4xC32).3S3 = D36:C6φ: S3/C1S3 ⊆ Out D4xC327212+(D4xC3^2).3S3432,155
(D4xC32).4S3 = He3:9SD16φ: S3/C1S3 ⊆ Out D4xC32726(D4xC3^2).4S3432,193
(D4xC32).5S3 = D4xC9:C6φ: S3/C1S3 ⊆ Out D4xC323612+(D4xC3^2).5S3432,362
(D4xC32).6S3 = Dic18:2C6φ: S3/C1S3 ⊆ Out D4xC327212-(D4xC3^2).6S3432,363
(D4xC32).7S3 = C3xD4.D9φ: S3/C3C2 ⊆ Out D4xC32724(D4xC3^2).7S3432,148
(D4xC32).8S3 = C3xD4:D9φ: S3/C3C2 ⊆ Out D4xC32724(D4xC3^2).8S3432,149
(D4xC32).9S3 = C36.17D6φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2).9S3432,190
(D4xC32).10S3 = C36.18D6φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2).10S3432,191
(D4xC32).11S3 = C3xD4xD9φ: S3/C3C2 ⊆ Out D4xC32724(D4xC3^2).11S3432,356
(D4xC32).12S3 = C3xD4:2D9φ: S3/C3C2 ⊆ Out D4xC32724(D4xC3^2).12S3432,357
(D4xC32).13S3 = D4xC9:S3φ: S3/C3C2 ⊆ Out D4xC32108(D4xC3^2).13S3432,388
(D4xC32).14S3 = C36.27D6φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2).14S3432,389
(D4xC32).15S3 = C3xC32:9SD16φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2).15S3432,492
(D4xC32).16S3 = C33:24SD16φ: S3/C3C2 ⊆ Out D4xC32216(D4xC3^2).16S3432,508
(D4xC32).17S3 = C32xD4.S3φ: S3/C3C2 ⊆ Out D4xC3272(D4xC3^2).17S3432,476

׿
x
:
Z
F
o
wr
Q
<