extension | φ:Q→Out N | d | ρ | Label | ID |
(D4xC32).1S3 = He3:8SD16 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 72 | 12- | (D4xC3^2).1S3 | 432,152 |
(D4xC32).2S3 = Dic18:C6 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 72 | 12- | (D4xC3^2).2S3 | 432,154 |
(D4xC32).3S3 = D36:C6 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 72 | 12+ | (D4xC3^2).3S3 | 432,155 |
(D4xC32).4S3 = He3:9SD16 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 72 | 6 | (D4xC3^2).4S3 | 432,193 |
(D4xC32).5S3 = D4xC9:C6 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 36 | 12+ | (D4xC3^2).5S3 | 432,362 |
(D4xC32).6S3 = Dic18:2C6 | φ: S3/C1 → S3 ⊆ Out D4xC32 | 72 | 12- | (D4xC3^2).6S3 | 432,363 |
(D4xC32).7S3 = C3xD4.D9 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | 4 | (D4xC3^2).7S3 | 432,148 |
(D4xC32).8S3 = C3xD4:D9 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | 4 | (D4xC3^2).8S3 | 432,149 |
(D4xC32).9S3 = C36.17D6 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 216 | | (D4xC3^2).9S3 | 432,190 |
(D4xC32).10S3 = C36.18D6 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 216 | | (D4xC3^2).10S3 | 432,191 |
(D4xC32).11S3 = C3xD4xD9 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | 4 | (D4xC3^2).11S3 | 432,356 |
(D4xC32).12S3 = C3xD4:2D9 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | 4 | (D4xC3^2).12S3 | 432,357 |
(D4xC32).13S3 = D4xC9:S3 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 108 | | (D4xC3^2).13S3 | 432,388 |
(D4xC32).14S3 = C36.27D6 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 216 | | (D4xC3^2).14S3 | 432,389 |
(D4xC32).15S3 = C3xC32:9SD16 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | | (D4xC3^2).15S3 | 432,492 |
(D4xC32).16S3 = C33:24SD16 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 216 | | (D4xC3^2).16S3 | 432,508 |
(D4xC32).17S3 = C32xD4.S3 | φ: S3/C3 → C2 ⊆ Out D4xC32 | 72 | | (D4xC3^2).17S3 | 432,476 |